Towards PDE-Based Video Compression with Optimal Masks Prolongated by Optic Flow

Abstract

Lossy image compression methods based on partial differential equations have received much attention in recent years. They may yield high-quality results but rely on the computationally expensive task of finding an optimal selection of data. For the possible extension to video compression, this data selection is a crucial issue. In this context, one could either analyse the video sequence as a whole or perform a frame-by-frame optimisation strategy. Both approaches are prohibitive in terms of memory and run time. In this work, we propose to restrict the expensive computation of optimal data to a single frame and to approximate the optimal reconstruction data for the remaining frames by prolongating it by means of an optic flow field. In this way, we achieve a notable decrease in the computational complexity. As a proof-of-concept, we evaluate the proposed approach for multiple sequences with different characteristics. In doing this, we discuss in detail the influence of possible computational setups. We show that the approach preserves a reasonable quality in the reconstruction and is very robust against errors in the flow field.

Related