6th International Conference on Scale Space and Variational Methods in Computer Vision, Kolding, Denmark, June 4-8, 2017

Analytic Existence and Uniqueness Results for PDE-Based Image Reconstruction with the Laplacian

Laurent Hoeltgen¹, Isaac Harris², Michael Breuß¹, Andreas Kleefeld³

¹ Brandenburg Technical University, Germany
² Texas A&M University, U.S.A.
³ lülich Supercomputing Centre, Germany

June 7, 2017

This work is licensed under a Creative Commons "Attribution-ShareAlike 4.0 International" license.

o-tu
1
2
3
4
5
6
7
7 8 9 10
9
10
11
12
13
14
15
15 16
17
17 18

Introduction (1)

PDE-based Image Inpainting

(a) Image repair

(b) Image compression

Figure: Important inpainting applications

Introduction (2)

One of the most successful setups uses the Laplacian [Noma & Misulia, 1959]:

 $\begin{aligned} -\Delta u &= 0, \quad \text{on } \Omega \smallsetminus \Omega_K \\ u &= f, \quad \text{on } \partial \Omega_K \\ \partial_n u &= 0, \quad \text{on } \partial \Omega \smallsetminus \partial \Omega_K \end{aligned}$

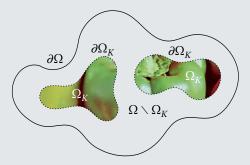


Figure: Generic inpainting model with known data f on Ω_K .

Frequently Encountered Variations

• Using a mask function *c* [Weickert & Welk, 2006]:

$$c(u - f) + (1 - c)(-\Delta u) = 0$$
, on Ω
 $\partial_n u = 0$, on $\partial \Omega$

with $c: \Omega \to \{0, 1\}$, or [0, 1], or even \mathbb{R}

• Rewriting as a Helmholtz equation [H., 2017]:

$$-\Delta u + \frac{c}{1-c}u = \frac{c}{c-1}f, \text{ on } \Omega \setminus \Omega_K$$
$$u = f, \text{ on } \partial \Omega_K$$
$$\partial_n u = 0, \text{ on } \partial \Omega$$

Motivation and Goals

- Laplace equation is well understood, but:
 - regularity of solutions depends on boundary data
 - impact of *c* has received little attention
 - boundaries may prevent the existence of a solution
- On the discrete side, we know that:
 - most discretised formulations are well-posed
 - they require upper bounds on *c*
 - upper bound depends on discretisation of the Laplacian

Verdict:

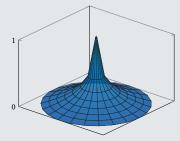
The current situation is not satisfying!

-tu
1
2
3
4 5 6
5
6
7
8
9
10
11
12
13
14
14 15 16
17
18

Hidden Pitfalls

 $-\Delta u = 0$, on $B_1(0) \setminus \{0\}$ u = 1, when x = 0u = 0, when ||x|| = 1

- PDE does **not** have a solution
- naive finite difference discretisation yields linear system
- system matrix is regular (Geršgorin's disk theorem)



Model Assumptions

The following assumptions are always assumed to hold.

- Ω is open and bounded with C^{∞} boundary $\partial \Omega$.
- $f: \Omega \to \mathbb{R}$ is C^{∞}
- $\Omega_K \subsetneq \Omega$ is closed, has positive measure, and C^{∞} boundary
- for mixed boundary value problems, $\partial \Omega \cap \partial \Omega_K = \emptyset$

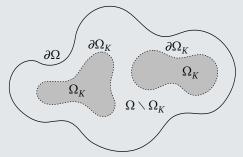


Figure: Assumptions on the considered domain

ひつく
1
2
2 3
4
5
5 6
7
7 8
9
10
10 11 12 13
12
13
14
15
14 15 16
17
17 18

Possible Setups

Depending on size and shape of Ω_K we obtain

- Dirichlet problem with (in-)homogeneous boundary conditions
- Neumann problem with homogeneous boundary conditions
- mixed Neumann, Dirichlet boundary conditions

(a) Dirichlet problem

(b) Neumann problem

(c) Mixed problem

Figure: Possible setups to consider

Theorem ([Ern & Germond, 2004])

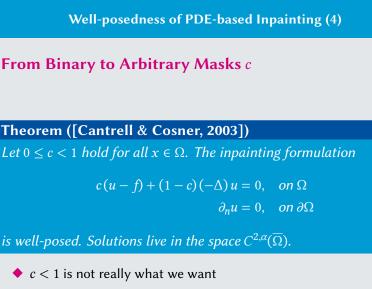
The classic inpainting formulation

 $-\Delta u = 0, \quad on \ \Omega \setminus \Omega_K$ $u = f, \quad on \ \partial \Omega_K$ $\partial_n u = 0, \quad on \ \partial \Omega \setminus \partial \Omega_K$

is well-posed. Solutions live in the Sobolev space H^1 .

Well-posedness is understood in the sense of Hadamard:

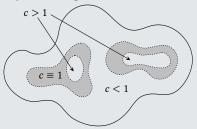
- **1.** Solution *u* exists for every possible Ω , Ω_K , and *f*
- 2. Solution *u* is unique
- 3. Solution *u* depends continuously on the data



◆ $c \ge 1$ allows contrast enhancing and is important for applications

Idea: Separating Regions

◆ **Continuous** *c* separates regions where *c* > 1 and *c* < 1



Regions can be handled independently.

PDE can be rewritten for each region as:

$$c(u - f) - (1 - c)\Delta u = 0, \quad \text{on } \Omega \smallsetminus \Omega_K$$
$$u = f, \quad \text{on } \Omega_K$$
$$\partial_n u = 0, \quad \text{on } \partial\Omega \smallsetminus \partial\Omega_I$$

From Laplace to Helmholtz

Whenever c > 1 or c < 1, the PDE

$$c(u - f) - (1 - c)\Delta u = 0, \quad \text{on } \Omega \smallsetminus \Omega_K$$
$$u = f, \quad \text{on } \Omega_K$$
$$\partial_n u = 0, \quad \text{on } \partial\Omega \smallsetminus \partial\Omega_K$$

can be rewritten as an inhomogeneous Helmholtz equation

 $-\Delta u + \eta u = g \quad \text{on } \Omega \smallsetminus \Omega_K$ $u = f \quad \text{on } \partial \Omega_K$ $\partial_n u = 0 \quad \text{on } \partial \Omega \smallsetminus \partial \Omega_K$

with $g := \eta f$ and non-constant refraction $\eta := \frac{c}{1-c}$

>-tu
1
2
3
4
5
5 6
7
7 8
9
10
11
11 12 13
13
14
15
15 16
17
17 18

Weak Formulation of the Helmholtz Equation

The corresponding weak formulation reads

$$\int_{\Omega \setminus \Omega_K} \nabla u \nabla \varphi + \eta u \varphi \, \mathrm{d}x = \int_{\Omega \setminus \Omega_K} \Delta f \varphi \, \mathrm{d}x - \int_{\partial \Omega \setminus \partial \Omega_K} \varphi \partial_n f \, \mathrm{d}S$$

which needs to be solved in

$$V := \left\{ \phi \in H^1 \left(\Omega \smallsetminus \Omega_K \right) \middle| \phi \middle|_{\partial \Omega_K} = 0 \right\}$$

Note that:

η > 0 for c < 1: Lax-Milgram is applicable
η < 0 for c > 1: Lax-Milgram is **not** applicable

Existence of a Weak Solution

We observe:

the space V can be equipped with the scalar product

$$\langle u, \varphi \rangle \coloneqq \int_{\Omega \setminus \Omega_K} \nabla u \nabla \varphi \, \mathrm{d} x$$

• the Riesz representation theorem asserts the existence of the bounded linear operator $B : V \rightarrow V$

$$\langle Bu, \varphi \rangle := \int_{\Omega \setminus \Omega_K} -\eta u \varphi \, \mathrm{d} x$$

• $H^1 \hookrightarrow L^2$ implies that *B* is compact and selfadjoint

Well-posedness of PDE-based Inpainting (9)

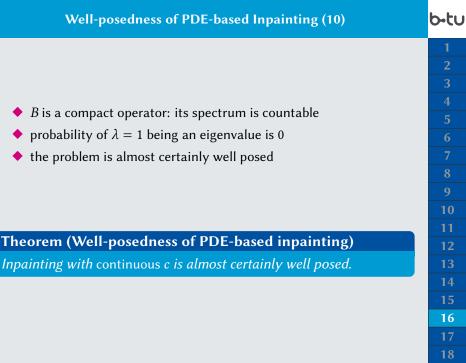
Our weak formulation

$$\underbrace{\int_{\Omega \setminus \Omega_K} \nabla u \nabla \varphi \, \mathrm{d}x - \int_{\Omega \setminus \Omega_K} -\eta u \varphi \, \mathrm{d}x}_{=\langle u, \varphi \rangle - \langle Bu, \varphi \rangle} \underbrace{\int_{\Omega \setminus \Omega_K} \Delta f \varphi \, \mathrm{d}x - \int_{\Omega \setminus \partial\Omega_K} \varphi \partial_n f \, \mathrm{d}S}_{=:\ell(\varphi)}$$

can now be rewritten as a variational equation

$$(I-B)u = \ell$$

- ♦ Fredholm alternative implies that *I* − *B* is invertible if it is injective
- I B is injective if $\lambda = 1$ is **not** an eigenvalue of B



Conclusions

Take Home Message

- inpainting with the Laplacian is almost always well posed
- iglet solutions are at least in H^1
- implies that discrete equations should be solvable almost always
- non-binary masks are related to the Helmholtz equation

>∙t ∪
1
2
2 3
4
5
6
7
7 8
9 10
10
11
12 13
14
15
16
15 16 17 18
18

Thank you very much for your attention!

For more information:

https://www.b-tu.de/fg-angewandte-mathematik/

