Sparse ℓ_1 Regularisation of Matrix Valued Models for Acoustic Source Characterisation

Laurent Hoeltgen* and Michael Breuß* Gert Herold** and Ennes Sarradj**

*Chair for Applied Mathematics, BTU Cottbus-Senftenberg **Department of Engineering Acoustics, TU Berlin

Brandenburg University of Technology Cottbus - Senftenberg

Acoustic Source Characterisation

Experimental Setup:

- *n* microphones at known locations
- m known and fixed possible source locations x_i
- $s \ll m$ unknown sound sources (monopoles)
- sound sources are uncorrelated
- emitted sound is recorded at all microphones **Task:**

• locate all sound emitting sources

Physical Model:

• sound pressure recorded at microphone *j*:

 $c_{j} \coloneqq \sum_{i} \underbrace{\frac{r_{0,j}}{r_{i,j}} \exp\left(\imath \omega \frac{r_{0,j} - r_{i,j}}{c_{0}}\right)}_{=:a_{ij}} x_{i}$

• using the cross-spectral matrix $C \coloneqq \mathsf{E}[cc^{\top}]$:

Our Contributions

apply popular method from imaging to engineering task

 \bullet combine matrix differential calculus with fast numerics in $\mathbb C$

• new model for the task at hand

Task:

Our Model	Results
We seek a diagonal matrix $X \in \mathbb{C}^{m,m}$ with sparse diagonal that verifies $AXA^{\top} = C, A \in \mathbb{C}^{n,m}, C \in \mathbb{C}^{n,n}$ We solve either $\arg\min_{X \in \mathbb{C}^{m,m}} \left\{ \frac{1}{2} \ AXA^{\top} - C\ _{F}^{2} + \lambda \ X\ _{1} \right\} $ (1) $\arg\min_{X \in \mathbb{C}^{m,m}} \left\{ \frac{1}{2} \ AXA^{\top} - C\ _{F}^{2} + \ W \circ X\ _{1} \right\} $ (2) $\int \arg\min_{X \in \mathbb{C}^{m,m}} \left\{ \frac{1}{2} \ AXA^{\top} - C\ _{F}^{2} + \lambda \ X\ _{1} \right\} $ (2)	 3 sources, 1681 possible source locations on regular grid, 64 microphones data can be noisy and wrongly encoded (emitted from positions that shouldn't exist) left figure represents main diagonal of solution X (with clusters) right figure represents microphone array (in blue), correct signal strength (white labels), estimated positions (crosses) and clusters (grey shapes) Model Eq. (2)
$\begin{cases} X \in \mathbb{C}^{m,m} \left\{ 2^m \right\} & \text{(3)} \\ \text{under the constraint that } X \text{ is a diagonal matrix} \end{cases}$ with parameters $\lambda \in \mathbb{R}$, $W \in \mathbb{R}^{m,m}$	0.1422

A Solving Strategy Based on Split Bregman

Input: Data A, C, and parameters λ , W, α , μ **Output:** Optimal Matrix X with sparse diagonal

initialise X = 0, D = 0 and B = 0

repeat

set $\hat{X} = X$ and $\hat{D} = D$

repeat

set $\overline{X} = \hat{X}$

repeat

compute optimal descent step size α .

if solving (1) or (2) then

$$\begin{vmatrix} \overline{X} = \overline{X} - \alpha \left(A^{\top} \left(A \overline{X} A^{\top} - C \right) A + \lambda \left(\overline{X} - \hat{D} + B \right) \right) \\$$
end if
if solving (3) then

$$\left| \overline{X} = \overline{X} - \alpha \left(A^{\top} \left(A \overline{X} A^{\top} - C \right) A + \lambda \left(\overline{X} - \hat{D} + B \right) \right) \circ I \right|$$
ord if

end if

until convergence towards \overline{X}^*

if solving (1) or (2) **then**
$$\hat{D} = \operatorname{shrink}_{\frac{\mu W}{\lambda}} \left(\overline{X}^* + B \right)$$

end if

if solving (3) then $\hat{D} = \operatorname{shrink}_{\underline{\mu}} \left(\overline{X}^* + B \right)$

 λ

Model Eq. (3)

Conclusions

end if

until convergence towards \hat{X}^* and \hat{D}^* set $X = \hat{X}^*$, $D = \hat{D}^*$ and B = B - D + Xuntil convergence of X, D and B return X

Post Processing (for noisy data)

Input: main diagonal of optimised matrix X **Output:** clusters where centroid indicates source position and strength

begin

remap the diagonal entries from X to actual positions in space. apply a k-means clustering to partition data.

use the centroid position of each cluster as source position.

sum up all source strengths from a cluster to obtain the source strength.

end

return clustered data

- almost perfect recovery with noise free data
- outperforms competing methods like CMF and Clean-SC on corrupt data
- post processing always yields desired number of sources
- fair convergence speed
- Laurent Hoeltgen, Michael Breuß, Gert Herold, Ennes Sarradj Sparse l₁ Regularisation of Matrix Valued Models for Acoustic Source Characterisation, Arxiv Report 1607.00171v1, 2016
- Gert Herold, Ennes Sarradj
 Preliminary Benchmarking of Microphone Array Methods, Berlin Beamforming Conference, 2014

This work is licensed under a Creative Commons "Attribution-ShareAlike 4.0 International" license.

CC BY-SA