Mathematical Image Analysis Group

Optimal Interpolation Data for Image Reconstructions

PhD. Defense Talk

Laurent Arthur Hoeltgen

March 30th, 2015

This work is licensed under a Creative Commons 'Attribution-ShareAlike 4.0 International' license.

What Is Inpainting?

Recover missing data in given image through interpolation.

Image with missing data

Reconstruction with Laplace interpolation

Standard setting:

- impossible to choose missing data
- requires optimal interpolation methods
- We take a different approach:
 - fix interpolation method
 - select sparse and optimised data

Is it possible to get good results with only 5% of data?

Why do this?

• allows image compression

Μ	
	Α
1	2
3	4
5	6
7	8
9	10
11	12
13	14
15	16
17	18
19	20
21	22
23	24
25	26
27	28
29	30
31	32
33	34

Motivation (3)

How Important Is a Good Optimisation?

 Position of interpolation data matters when sparse (say 5%): (Mainberger et al. 2012)

Original image

Random positions

Optimal positions

Μ	
	Α
1	2
3	4
5	6
7	8
9	10
11	12
13	14
15	16
17	18
19	20
21	22
23	24
25	26
27	28
29	30
31	32
33	34

 Pixel values at given positions equally important (Mainberger et al. 2012)

Reconstructions from same random mask with 5% density:

Original image

Without grey value optimisation

With grey value optimisation

How to find all this optimal data?

Related work

Previous findings on PDE-Based inpainting and compression:

- Contour-based reconstructions (Carlsson 1988)
- ◆ Wavelet decompositions with TV (Chan et al. 2001)
- Toppoints in scale space (Kanter et al. 2005)
- Spline based representations (Orzan et al. 2008)
- Subdivision schemes (Galić et al. 2008, Schmaltz et al. 2009)
- Variational approach (Belhachmi et al. 2009)
- Stochastic optimisation (Mainberger et al. 2012)
- Bilevel optimisation (Chen et al. 2014)

Μ	
	Α
1	2
3	4
5	6
7	8
9	10
11	12
13	14
15	16
17	18
19	20
21	22
23	24
25	26
27	28
29	30
31	32
33	34

Outline

- PDE-Based Image Inpainting
- Finding Optimal Data Locations

Finding Optimal Data Values

Μ	
	Α
1	2
3	4
5	6
7	8
9	10
11	12
13	14
15	16
17	18
19	20
21	22
23	24
25	26
27	28
29	30
31	32
33	34

PDE-Based Image Inpainting

Which interpolation operator should be used?

Requirements:

- 1. simple to analyse
- 2. applicable for any domain and codomain
- 3. able to handle arbitrarily scattered data
- 4. fast to carry out

Laplace interpolation fulfils all these requirements.

Μ	
運動	Α
1	2
3	4
5	6
7	8
9	10
11	12
13	14
15	16
17	18
19	20
21	22
23	24
25	26
27	28
29	30
31	32
33	34

PDE-Based Image Inpainting (2)

Laplace Interpolation for Image Inpainting

Consider the Laplace equation with mixed boundary conditions.

$-\Delta u = 0,$	on $arOmega$
u = g,	on $arOmega_K$
$\partial u = 0$	an aQ

$$\partial_n u = 0$$
, on $\partial \Omega$

• Ω_K : represents known data • $\Omega \setminus \Omega_K$: region to be inpainted (i.e. unknown data) Image reconstructions are solutions u.

Μ	
運動	Α
1	2
3	4
5	6
7	8
9	10
11	12
13	14
15	16
17	18
19	20
21	22
23	24
25	26
27	28
29	30
31	32
33	34

$-\Delta u = 0,$	on \varOmega
u = g,	on $arOmega_K$
$\partial_n u = 0,$	on $\partial \Omega$

Mixed boundary value problem can be rewritten as $c \ (u-g) + (1-c) \ (-\Delta)u = 0, \quad \text{on } \Omega$ $\partial_n u = 0, \quad \text{on } \partial\Omega$

with $c \equiv 1$ on Ω_K and $c \equiv 0$ on $\Omega \setminus \Omega_K$.

Optimising binary c known as free knot problem for 1D signals.

Previous equation makes also sense if c maps to whole \mathbb{R} . \blacklozenge can be seen as a regularisation

- Finding binary masks is a non-convex, combinatorial task.
- Non-binary masks allow better fits to the data.

- Finding binary masks is a non-convex, combinatorial task.
- Non-binary masks allow better fits to the data.

- Finding binary masks is a non-convex, combinatorial task.
- Non-binary masks allow better fits to the data.

- Finding binary masks is a non-convex, combinatorial task.
- Non-binary masks allow better fits to the data.

- Finding binary masks is a non-convex, combinatorial task.
- Non-binary masks allow better fits to the data.

- Finding binary masks is a non-convex, combinatorial task.
- Non-binary masks allow better fits to the data.

- Finding binary masks is a non-convex, combinatorial task.
- Non-binary masks allow better fits to the data.

New Findings

Standard finite difference schemes in 2D for

$$c \ (u-g) + (1-c) \ (-\varDelta)u = 0, \quad \text{on } \ \varOmega$$

$$\partial_n u = 0, \quad \text{on } \ \partial \Omega$$

yield a linear system of equations.

The system matrix has the following properties:

- 1. All eigenvalues are real if c is bounded by 1.
- **2.** Matrix is invertible if c maps to $\left[0, \frac{8}{7}\right]$.
- 3. Solutions obey max-min principle if c maps to [0,1].

Generalisation of Mainberger et al. (2011) to the non-binary case.

Μ	
運動	Α
1	2
3	4
5	6
7	8
9	10
11	12
13	14
15	16
17	18
19	20
21	22
23	24
25	26
27	28
29	30
31	32
33	34

A Novel Optimal Control Model (EMMCVPR 2013)

Optimal non-binary masks \boldsymbol{c} for recovering \boldsymbol{g} obtained from

$$\begin{split} & \arg\min_{u, c} \{ \int_{\Omega} \frac{1}{2} \left(u - g \right)^2 + \lambda |c| + \frac{\varepsilon}{2} |c|^2 \, \mathrm{d}x \} \\ & \text{subject to:} \begin{cases} c \ (u - g) + (1 - c)(-\Delta)u = 0, & \text{on } \Omega \\ \partial_n u = 0, & \text{on } \partial\Omega \end{cases} \end{split}$$

◆ PDE enforces that we only get suitable solutions.

 $\bullet \;$ one solution u(c) for each valid choice of c

• Cost function optimises reconstructions u and masks c.

- $\frac{1}{2}(u-g)^2$ favours accurate reconstructions.
- $\lambda |c|$ prefers sparse data sets.

Interpretation

$$\begin{split} & \arg\min_{u, \ c} \{ \int_{\Omega} \frac{1}{2} \left(u - g \right)^2 + \mathbf{\lambda} |c| + \frac{\varepsilon}{2} |c|^2 \, \mathrm{d}x \} \\ & \text{subject to:} \begin{cases} c \ (u - g) + (1 - c)(-\Delta)u = 0, & \text{on } \Omega \\ \partial_n u = 0, & \text{on } \partial\Omega \end{cases} \end{split}$$

- Energy reflects trade-off between accuracy and sparsity.
 - Objectives cannot be fulfilled simultaneously.
- \blacklozenge λ steers sparsity of the interpolation data.
 - Small, positive λ : many data points, good reconstruction
 - Large, positive λ : few data points, bad reconstruction

Μ	
	Α
1	2
3	4
5	6
7	8
9	10
11	12
13	14
15	16
17	18
19	20
21	22
23	24
25	26
27	28
29	30
31	32
33	34

Finding Optimal Data Locations (3)

Properties

$$\begin{split} & \operatorname*{arg\,min}_{u,\,c} \{ \int_{\varOmega} \frac{1}{2} \, (u-g)^2 + \lambda |c| + \frac{\varepsilon}{2} |c|^2 \, \mathrm{d}x \} \\ & \mathsf{subject to:} \begin{cases} c \, (u-g) + (1-c)(-\varDelta)u = 0, & \mathsf{on } \varOmega \\ \partial_n u = 0, & \mathsf{on } \partial \Omega \end{cases} \end{split}$$

- Optimal control problem
- Model has similarites to Belhachmi et al. (2009)
- Large scale optimisation (often $\ge 100\,000$ unknowns)
- \blacklozenge $\lambda |c|$ is non-differentiable
- Constraint is non-convex due to mixed products in c and u.

Μ	
	Α
1	2
3	4
5	6
7	8
9	10
11	12
13	14
15	16
17	18
19	20
21	22
23	24
25	26
27	28
29	30
31	32
33	34

2

33 34

A Solution Strategy

ι

• Linearise constraint to handle non-convexity:

$$\begin{split} T(u,c) &\coloneqq c \; (u-g) + (1-c)(-\varDelta)u \\ T(u,c) &\approx T(u^k,c^k) + D_u T(u^k,c^k)(u-u^k) \\ &+ D_c T(u^k,c^k)(c-c^k) \end{split}$$

Add proximal term and solve iteratively

$$\begin{split} \arg\min_{u, c} \left\{ \int_{\Omega} \frac{1}{2} (u-g)^2 + \lambda |c| + \frac{\varepsilon}{2} |c|^2 \\ &+ \frac{\mu}{2} \left(u - u^k \right)^2 + \frac{\mu}{2} \left(c - c^k \right)^2 \mathrm{d}x \right\} \\ T(u^k, c^k) + D_u T(u^k, c^k)(u - u^k) + D_c T(u^k, c^k)(c - c^k) = 0 \\ \text{until fixed point is reached.} \end{split}$$

Algorithmic Details

Approach is similar to

- LCL algorithm (Murthagh et al. 1982),
- EM/MM method (Orthega et al. 1970).

• Linearised problem is convex and easier to solve.

- Derivation of the conjugate dual problem is possible.
 - unconstrained convex optimisation problem
 - solvable via gradient descent
 - may yield more accurate solutions and faster convergence

Μ	
	Α
1	2
3	4
5	6
7	8
9	10
11	12
13	14
15	16
17	18
19	20
21	22
23	24
25	26
27	28
29	30
31	32
33	34

Theoretical Findings

Algorithm yields several interesting results:

1. Energy is decreasing as long as:

$$\frac{1}{2} \left(\|u^{k+1} - g\|_2^2 - \|u^k - g\|_2^2 \right) \leq \lambda \left(\|c^{k+1}\|_1 - \|c^k\|_1 \right) + \frac{\varepsilon}{2} \left(\|c^{k+1}\|_2^2 - \|c^k\|_2^2 \right)$$

Gain in sparsity must outweigh loss in accuracy.

2. Fixed-points fulfil necessary optimality conditions:

$$u - g - D_u T(u, c)^\top p = 0$$

$$\lambda \partial \left(\left\| \cdot \right\|_1 \right)(c) + \varepsilon c + D_c T(u, c) \ p \ge 0$$

$$T(u, c) = 0$$

M	
	Α
1	2
3	4
5	6
7	8
9	10
11	12
13	14
15	16
17	18
19	20
21	22
23	24
25	26
27	28
29	30
31	32
33	34

Finding Optimal Data Locations (7)

Grey Scale Image Example

Input (256×256)

Non-binary mask (5% entries) Reconstruction (MSE: 16.9)

Even textured areas are recovered!

Colour Image Example

- Colour images are handled in YCbCr space.
- compute mask on Y channel
- use same mask to inpaint all channels

 $\begin{array}{c} \mathsf{Input} \\ (511 \times 511) \end{array}$

Non-binary mask (4% entries)

Reconstruction (MSE: 24.4)

Differences are barely visible!

Finding Optimal Data Values (1)

From Mask to Grey Value Optimisation (GVO)

- Control model optimises mask values and positions in c.
- Grey values g can be optimised, too.
- Does this help to reduce the error even further?
- Can it be done efficiently?

Μ	
	Α
1	2
3	4
5	6
7	8
9	10
11	12
13	14
15	16
17	18
19	20
21	22
23	24
25	26
27	28
29	30
31	32
33	34

Grey Value Optimisation (GVO)

 \blacklozenge Let mask c be fixed and M(c) the inpainting operator.

Mainberger et al. (2012) suggest to optimise the grey values g:

Grey Value Optimisation

$$f = \arg\min_{x} \{\frac{1}{2} \| M(c) x - g \|_{2}^{2} \}$$

Experiments suggest:

- GVO yields huge improvements for binary masks.
- GVO has no effect for optimised non-binary masks c.
- Both strategies yield same error.

Μ	
	Α
1	2
3	4
5	6
7	8
9	10
11	12
13	14
15	16
17	18
19	20
21	22
23	24
25	26
27	28
29	30
31	32
33	34

Grey Value Optimisation (GVO)

• Let mask c be fixed and M(c) the inpainting operator.

Mainberger et al. (2012) suggest to optimise the grey values g:

Grey Value Optimisation

$$f = \arg\min_{x} \{\frac{1}{2} \| M(c) x - g \|_{2}^{2} \}$$

Experiments suggest:

- GVO yields huge improvements for binary masks.
- GVO has no effect for optimised non-binary masks c.
- Both strategies yield same error.

Coincidence?

Μ	
	Α
1	2
3	4
5	6
7	8
9	10
11	12
13	14
15	16
17	18
19	20
21	22
23	24
25	26
27	28
29	30
31	32
33	34

Finding Optimal Data Values (3)

Which Data Can Be Optimised?

Optimising grey values and mask values can give the same results.

New Findings

• Complex relationship between inpainting data g and mask c:

$$\begin{split} c \; (u-g) + (1-c)(-\varDelta) u &= 0, \quad \text{on } \ \Omega \\ \partial_n u &= 0, \quad \text{on } \ \partial \Omega \end{split}$$

• Important: Mask locations coincide with data locations.

Equivalence in the data optimisation (EMMCVPR 2015)

If mask positions are **fixed** by set *K*: Mask value optimisation is equivalent to grey value optimisation.

$$\min_{\mathbf{c}_{i}, i \in K} \{ \|M(\mathbf{c}) g - g\|_{2}^{2} \} = \min_{\mathbf{x}_{i}, i \in K} \{ \|M(\bar{c}) \mathbf{x} - g\|_{2}^{2} \}$$

where \bar{c} is a binary mask for K.

Μ	
運動	Α
1	2
3	4
5	6
7	8
9	10
11	12
13	14
15	16
17	18
19	20
21	22
23	24
25	26
27	28
29	30
31	32
33	34

Benefits from This Equivalence

• GVO is much simpler than mask value optimisation.

least squares vs. non-convex optimisation task

• Less memory requirements allow image compression schemes.

- mask values need not be saved
- reduces file size by approximately 30%
- vital to develop feasible image compression codec

heuristic to speed up convergence for the optimal control solver

- threshold mask values during iterative scheme
- may reduce run time from 15 hours to 5 minutes

Μ	
	Α
1	2
3	4
5	6
7	8
9	10
11	12
13	14
15	16
17	18
19	20
21	22
23	24
25	26
27	28
29	30
31	32
33	34

Fast Numerics for Grey Value Optimisation

- finding optimal mask values is time consuming
 - non-convex and non-smooth optimisation task
- finding optimal grey values is a least squares problem
 - can be solved efficiently

use specialised algorithms for target environment

- LSQR (Paige & Saunders, 1982) based solver for CPUs
- primal dual (Chambolle & Pock, 2011) solver for GPUs

Μ	
	Α
1	2
3	4
5	6
7	8
9	10
11	12
13	14
15	16
17	18
19	20
21	22
23	24
25	26
27	28
29	30
31	32
33	34

Benchmarks

Run times with comparison to Mainberger et al. (2012)

Image Size,	CPU [s]			GPU [s]
(5% mask)	Mainberger et al.	LSQR	PD	PD
64 imes 64 128 imes 128	156.33 3116.70	2.69 18.73	5.82 52.57	1.28 3.33
256×256	95 832.64	113.07	260.26	9.01

GPU results by Sebastian Hoffmann

Speedup factor 850 on CPU and 10 000 on GPU.

Sequential vs. Combined Data Optimisation

- Tuning of mask and grey values happens sequentially.
- How much better would a combined optimisation be?
- Combined optimisation is difficult in general.
- Experiments suggest:
 - Slightly better quality
 - Significantly higher run time
- Gain in quality does not justify computational burden.

Α
2
4
6
8
10
12
14
16
18
20
22
24
26
28
30
32
34

Image Encoding

Joint work with Pascal Peter.

We compress a given (grey scale) image as follows.

- 1. computation of a binary mask with optimal control model
- 2. computation of optimal grey values
- **3.** quantisation optimisation to a finite number of colours uses algorithm of Schmaltz et al. (2009)
- 4. encoding of all the data in a container file
- 5. application of a high performing entropy coder (PAQ)

Decompression is done in reverse order with a final inpainting.

Μ	
	Α
1	2
3	4
5	6
7	8
9	10
11	12
13	14
15	16
17	18
19	20
21	22
23	24
25	26
27	28
29	30
31	32
33	34

Comparison to Industry Standards

M	
	Α
1	2
3	4
5	6
7	8
9	10
11	12
13	14
15	16
17	18
19	20
21	22
23	24
25	26
27	28
29	30
31	32
33	34

Visual Comparison

Original image (256×256)

Compressed image (13.6 : 1) (MSE: 15.97)

Positives and Negatives

- ✓ rather simple approach
- ✓ mathematically well founded
- competitive to state-of-the-art methods
- extensions to videos and colour images are straightforward
- × extremely slow (runtime of hours/days)
- × unable to handle textures
- 🗡 parameter tuning is difficult

Μ	
	Α
1	2
3	4
5	6
7	8
9	10
11	12
13	14
15	16
17	18
19	20
21	22
23	24
25	26
27	28
29	30
31	32
33	34

Summary

- generalisation of previous results on PDE-based inpainting
- extension of free knot optimisation to 2D
- interesting equivalence between mask and pixel optimisation
- ◆ a novel approach to find optimal inpainting data
- new and efficient numerical schemes

Outlook

- complete convergence theory
- faster numerics
- handling of textured images
- extensions to higher order and non-linear operators

Μ	
	Α
1	2
3	4
5	6
7	8
9	10
11	12
13	14
15	16
17	18
19	20
21	22
23	24
25	26
27	28
29	30
31	32
33	34

Thank you

Thank you for your attention

Μ	
	Α
1	2
3	4
5	6
7	8
9	10
11	12
13	14
15	16
17	18
19	20
21	22
23	24
25	26
27	28
29	30
31	32
33	34