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Motivation (1)

What Is Inpainting?

Recover missing data in given image through interpolation.

Image with Reconstruction with
missing data Laplace interpolation




Motivation (2)

# Standard setting:

® impossible to choose missing data

® requires optimal interpolation methods

@ We take a different approach:

® fix interpolation method

® select sparse and optimised data

Is it possible to get good results with only 5% of data?

@ Why do this?

® allows image compression



Motivation (3)

How Important Is a Good Optimisation?

® Position of interpolation data matters when sparse (say 5%):
(Mainberger et al. 2012)

f2

Random positions Optlmal positions




Motivation (4)

@ Pixel values at given positions equally important
(Mainberger et al. 2012)

Reconstructions from same random mask with 5% density:

With grey value
optimisation

Original Without grey value
image optimisation

How to find all this optimal data?



Motivation (5)

Related work

Previous findings on PDE-Based inpainting and compression:

® Contour-based reconstructions (Carlsson 1988)

® Wavelet decompositions with TV (Chan et al. 2001)

@ Toppoints in scale space (Kanter et al. 2005)

@ Spline based representations (Orzan et al. 2008)

® Subdivision schemes (Gali¢ et al. 2008, Schmaltz et al. 2009)
# Variational approach (Belhachmi et al. 2009)

# Stochastic optimisation (Mainberger et al. 2012)

@ Bilevel optimisation (Chen et al. 2014)
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PDE-Based Image Inpainting

Finding Optimal Data Locations

Finding Optimal Data Values

An Image Compression Codec




PDE-Based Image Inpainting (1)

PDE-Based Image Inpainting

Which interpolation operator should be used?

Requirements:

1. simple to analyse
2. applicable for any domain and codomain
3. able to handle arbitrarily scattered data

4. fast to carry out

Laplace interpolation fulfils all these requirements.




PDE-Based Image Inpainting (2)

Laplace Interpolation for Image Inpainting

Consider the Laplace equation with mixed boundary conditions.

—Au =0, on {2
u=g, on {2k
Opu =0, on 912

® (Jx: represents known data

® 2\ k: region to be inpainted (i.e. unknown data)

® Image reconstructions are solutions u.




PDE-Based Image Inpainting (3)

—Au =0, on {2
u=g¢g, on g
Opu =20, ondf2

Mixed boundary value problem can be rewritten as
c(u—g)+(1—-¢)(=A)u=0, on {2
Opu =0, on 92
withc=1on 2 and c=0o0n 2\ k.

Optimising binary ¢ known as free knot problem for 1D signals.

Previous equation makes also sense if ¢ maps to whole R.

@ can be seen as a regularisation




PDE-Based Image Inpainting (4)

Benefits of a Non-Binary Mask ¢

@ Finding binary masks is a non-convex, combinatorial task.
@ Non-binary masks allow better fits to the data.
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Reconstruction by piecewise linear inerpolation in 1D.
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Benefits of a Non-Binary Mask ¢

@ Finding binary masks is a non-convex, combinatorial task.
@ Non-binary masks allow better fits to the data.
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PDE-Based Image Inpainting (4)

Benefits of a Non-Binary Mask ¢

@ Finding binary masks is a non-convex, combinatorial task.
@ Non-binary masks allow better fits to the data.
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PDE-Based Image Inpainting (4)

Benefits of a Non-Binary Mask ¢

@ Finding binary masks is a non-convex, combinatorial task.
@ Non-binary masks allow better fits to the data.
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PDE-Based Image Inpainting (4)

Benefits of a Non-Binary Mask ¢

@ Finding binary masks is a non-convex, combinatorial task.
@ Non-binary masks allow better fits to the data.
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PDE-Based Image Inpainting (4)

Benefits of a Non-Binary Mask ¢

@ Finding binary masks is a non-convex, combinatorial task.
@ Non-binary masks allow better fits to the data.
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PDE-Based Image Inpainting (4)

Benefits of a Non-Binary Mask ¢

@ Finding binary masks is a non-convex, combinatorial task.
@ Non-binary masks allow better fits to the data.
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PDE-Based Image Inpainting (5)

New Findings
Standard finite difference schemes in 2D for

c(u—g)+(1—-c¢c)(=A)u=0, on?
Opu =0, on9df2

yield a linear system of equations.

The system matrix has the following properties:

1. All eigenvalues are real if ¢ is bounded by 1.
. . . . . 8
2. Matrix is invertible if ¢ maps to [0, £].

3. Solutions obey max-min principle if ¢ maps to [0, 1].

Generalisation of Mainberger et al. (2011) to the non-binary case.




Finding Optimal Data Locations (1)

A Novel Optimal Control Model (EMMCVPR 2013)

Optimal non-binary masks ¢ for recovering g obtained from

. 1 €
arg min{ 3 (u—g)% + Ne| + §]c|2 dx}
u, ¢ N

subject to: ( (u—g)+ (1 —c)(=Au =0, on
Opu = 0, on 012
@ PDE enforces that we only get suitable solutions.

® one solution u(c) for each valid choice of ¢

@ Cost function optimises reconstructions u and masks c.

® . (u— g)* favours accurate reconstructions.

® )\|c| prefers sparse data sets.




Finding Optimal Data Locations (2)

Interpretation

. 1 €
arg min{ 3 (u—9)* + Al + §]c|2 dx}
2

u, ¢
- 1—¢)(=Au =0 0
subject to: ¢c(u=g)+ {1 -c)(=Au - on
Opu = 0, on 0f2
@ Energy reflects trade-off between accuracy and sparsity.
® Objectives cannot be fulfilled simultaneously.
@ )\ steers sparsity of the interpolation data.

® Small, positive XA: many data points, good reconstruction
® |arge, positive A: few data points, bad reconstruction




Finding Optimal Data Locations (3)

Properties

. 1 €
arg min{ 3 (u—g)* + Nc| + §]c|2 dx}
u, ¢ 0

clu—g)+(1—¢)(—=A)u =0, on {2

subject to:
Onu =0, on 012

@ Optimal control problem
@ Model has similarites to Belhachmi et al. (2009)
® Large scale optimisation (often > 100000 unknowns)

® )\c| is non-differentiable

@ Constraint is non-convex due to mixed products in ¢ and w.



Finding Optimal Data Locations (4)

A Solution Strategy

@ Linearise constraint to handle non-convexity:

T(u,c)i=c(u—g)+ (1 —c)(—=AQ)u
T(u,c) = T(u*, c*) + DT (u*, ) (u — uF)
+ D.T(uF, *) (e — )

@ Add proximal term and solve iteratively

. 1 €
arg mln{/ L= g+ Ale| + Elep
2 2

2 2
+%(u7uk) +g<c—ck> dx}

T(u",c*) + DT (uF, ) (u —u*) + DT (W, ) (e — ) =0

until fixed point is reached.



Finding Optimal Data Locations (5)

Algorithmic Details

@ Approach is similar to
® LCL algorithm (Murthagh et al. 1982),

® EM/MM method (Orthega et al. 1970).
@ Linearised problem is convex and easier to solve.

@ Derivation of the conjugate dual problem is possible.

® unconstrained convex optimisation problem
® solvable via gradient descent

® may yield more accurate solutions and faster convergence




Finding Optimal Data Locations (6)

Theoretical Findings
Algorithm yields several interesting results:

1. Energy is decreasing as long as:

1 k
5 (Il = gl = llu* — g113) <

: £ k k
A(IF 8 = k1) + 5 (Ieh 213 = b3

Gain in sparsity must outweigh loss in accuracy.

2. Fixed-points fulfil necessary optimality conditions:
w—g—DyT(u,¢) ' p=0

X0 (||Ily) (¢) + ec+ DT (u,c) p> 0
T(u,c) =0




Finding Optimal Data Locations (7)

Grey Scale Image Example

Input Non-binary mask Reconstruction
(256 x 256) (5% entries) (MSE: 16.9)

Even textured areas are recovered!




Finding Optimal Data Locations (8)

Colour Image Example

@ Colour images are handled in YCbCr space.
@ compute mask on Y channel

@ use same mask to inpaint all channels

Input Non-binary mask Reconstruction
(511 x 511) (4% entries) (MSE: 24.4)

Differences are barely visible!




Finding Optimal Data Values (1)

From Mask to Grey Value Optimisation (GVO)

@ Control model optimises mask values and positions in c.
@ Grey values g can be optimised, too.
@ Does this help to reduce the error even further?

@ Can it be done efficiently?




Finding Optimal Data Values (2)

Grey Value Optimisation (GVO)

@ Let mask ¢ be fixed and M (c) the inpainting operator.

Mainberger et al. (2012) suggest to optimise the grey values g:

Grey Value Optimisation
.1
f = argmin{||M (c) = — g3}
x

Experiments suggest:

@ GVO yields huge improvements for binary masks.
@ GVO has no effect for optimised non-binary masks c.

@ Both strategies yield same error.




Finding Optimal Data Values (2)

Grey Value Optimisation (GVO)

@ Let mask ¢ be fixed and M (c) the inpainting operator.

Mainberger et al. (2012) suggest to optimise the grey values g:

Grey Value Optimisation
.1
f = argmin{||M (c) = — g3}
x

Experiments suggest:

@ GVO yields huge improvements for binary masks.
@ GVO has no effect for optimised non-binary masks c.

@ Both strategies yield same error.

Coincidence?




Finding Optimal Data Values (3)
Which Data Can Be Optimised?

Optimising grey values and mask values can give the same results.
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Finding Optimal Data Values (4)
New Findings

@ Complex relationship between inpainting data g and mask c:

clu—g)+(1—¢)(—A)u=0, on{?
Opu =0, on d2

@ Important: Mask locations coincide with data locations.

Equivalence in the data optimisation (EMMCVPR 2015)

If mask positions are fixed by set K:
Mask value optimisation is equivalent to grey value optimisation.

. M o 2 _ : M (¢ _ 2
min 1M () g — g1} = min (1M @)= - g}

Ci, 1

where ¢ is a binary mask for K.




Finding Optimal Data Values (5)

Benefits from This Equivalence

@ GVO is much simpler than mask value optimisation.
® |east squares vs. non-convex optimisation task
@ Less memory requirements allow image compression schemes.

® mask values need not be saved
® reduces file size by approximately 30%

® vital to develop feasible image compression codec
@ heuristic to speed up convergence for the optimal control solver

® threshold mask values during iterative scheme

® may reduce run time from 15 hours to 5 minutes




Finding Optimal Data Values (6)

Fast Numerics for Grey Value Optimisation

# finding optimal mask values is time consuming
® non-convex and non-smooth optimisation task
@ finding optimal grey values is a least squares problem

® can be solved efficiently

@ use specialised algorithms for target environment
® LSQR (Paige & Saunders, 1982) based solver for CPUs

® primal dual (Chambolle & Pock, 2011) solver for GPUs




Finding Optimal Data Values (7)

Benchmarks

Run times with comparison to Mainberger et al. (2012)

Image Size, CPU [s] GPU [s]
0,

(5% mask) Mainberger et al. LSQR PD PD
64 x 64 156.33 2.69 5.82 1.28

128 x 128 3116.70 18.73 52.57 3.33

256 x 256 05832.64  113.07  260.26 9.01

GPU results by Sebastian Hoffmann

Speedup factor 850 on CPU and 10000 on GPU.




Finding Optimal Data Values (8)

Sequential vs. Combined Data Optimisation

@ Tuning of mask and grey values happens sequentially.
@ How much better would a combined optimisation be?
@ Combined optimisation is difficult in general.
@ Experiments suggest:

® Slightly better quality

® Significantly higher run time

@ Gain in quality does not justify computational burden.




An Image Compression Codec (1)

Image Encoding

Joint work with Pascal Peter.

We compress a given (grey scale) image as follows.

1.
2.

computation of a binary mask with optimal control model

computation of optimal grey values

. quantisation optimisation to a finite number of colours

uses algorithm of Schmaltz et al. (2009)

. encoding of all the data in a container file

. application of a high performing entropy coder (PAQ)

Decompression is done in reverse order with a final inpainting.




An Image Compression Codec (2)

Comparison to Industry Standards

MSE

40

30
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10

compression ratio

A
B Our codec o
JPEG ——
JPEG 2000 ——
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An Image Compression Codec (3)

Visual Comparison

Original image (256 x 256) Compressed image (13.6 : 1)
(MSE: 15.97)




An Image Compression Codec (4)

Positives and Negatives

v’ rather simple approach

4 mathematically well founded

4 competitive to state-of-the-art methods

v/ extensions to videos and colour images are straightforward
X extremely slow (runtime of hours/days)

X unable to handle textures

X parameter tuning is difficult




Summary and Outlook
Summary

@ generalisation of previous results on PDE-based inpainting
@ extension of free knot optimisation to 2D

@ interesting equivalence between mask and pixel optimisation
@ a novel approach to find optimal inpainting data

@ new and efficient numerical schemes

Outlook

@ complete convergence theory
# faster numerics
@ handling of textured images

@ extensions to higher order and non-linear operators




Thank you

Thank you for your attention
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