GAMM 2013 Novi Sad, Serbia, March 18-22, 2013

 $\frac{19}{20}$

Continuous Spatial and Tonal Point Optimisation for Interpolation and Approximation of Convex Signals with Homogeneous Diffusion

Laurent Hoeltgen

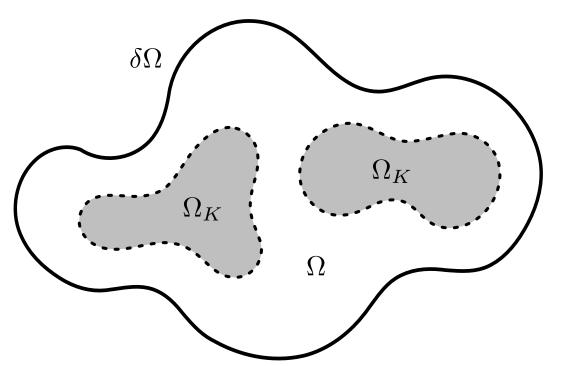
Mathematical Image Analysis Group, Saarland University http://www.mia.uni-saarland.de

> Joint work with: Simon Setzer (Saarland University) Joachim Weickert (Saarland University)

This work is licensed under a Creative Commons "Attribution-ShareAlike 4.0 International" license.

Inpainting with homogeneous diffusion

Consider the Laplace equation with mixed boundary conditions.



$$\begin{cases} \Delta u = 0, & \text{on } \Omega \\ u = g, & \text{on } \Omega_K \\ \partial_n u = 0, & \text{on } \delta \Omega \end{cases}$$

- lacktriangle Ω_K represents known data.
- $\Omega \setminus \Omega_K$ region to be inpaintend.
- lacktriangle Image reconstructions given by solution u of boundary value problem.

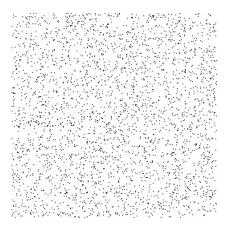
 $\frac{10}{10}$

<u>19</u>

Influence of the inpainting data

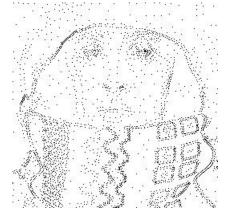
Choice of Ω_K has tremendous impact on the reconstruction.

Original Image



Badly chosen Ω_K .

Bad reconstruction.



Well chosen Ω_K .

Good reconstruction.

How to optimise the interpolation data Ω_K ?

Outlook

- Optimisation in an interpolation framework
 - Problem formulation
 - A new algorithm for optimal interpolation data
 - Theoretical analysis
 - Example
- Optimisation in an approximation framework
 - Problem formulation
 - An algorithm for optimal approximation data
 - Theoretical results
 - Example
- Conclusions

5 6

8

9

10

11

12

13

14

15

16

17

18

19

Analysis in the 1D setting

Simplification: Only consider 1D strictly convex functions $f:[a,b] \to \mathbb{R}$.

Advantages:

- Inpainting simplifies to piecewise linear spline interpolation.
- Analytic expression for reconstruction is available. We write (assuming $c_0 := a$ and $c_N := b$):

$$\ell^f(x; c_0, \dots, c_N) := \sum_{i=0}^{N-1} \left(\frac{f(c_{i+1}) - f(c_i)}{c_{i+1} - c_i} (x - c_i) + f(c_i) \right) \chi_{[c_i, c_{i+1}]}(x)$$

for the linear spline interpolating f at positions c_0, c_1, \ldots, c_N . $\chi_M(x)$ being the indicator function of the set M.

Interpolation error (L_1 sense) on the interval [a,b] given by

$$E\left(\left\{c_{i}\right\}_{i=0}^{N}, f\right) := \int_{a}^{b} \left|\ell^{f}\left(x; c_{0}, \dots, c_{N}\right) - f(x)\right| dx$$

Problem formulation

Task:

Find c_0, \ldots, c_N that minimise interpolation error $E\left(\left\{c_i\right\}_{i=0}^N, f\right)$.

Observe:

Error simplifies to

$$E\left(\left\{c_{i}\right\}_{i=0}^{N}, f\right) = \frac{1}{2} \sum_{i=0}^{N-1} \left(c_{i+1} - c_{i}\right) \left(f\left(c_{i+1}\right) + f\left(c_{i}\right)\right) - \int_{a}^{b} f(x) dx$$

Necessary conditions for a minimum:

$$f'(c_i) = \frac{f(c_{i+1}) - f(c_{i-1})}{c_{i+1} - c_{i-1}}, \quad \forall i = 1, \dots, N-1$$

Necessary optimality conditions

- $E\left(\left\{c_i\right\}_{i=0}^N, f\right)$ is convex for N=2 and generally non-convex for N>2.
- ◆ The requirement

$$f'(c_i) = \frac{f(c_{i+1}) - f(c_{i-1})}{c_{i+1} - c_{i-1}}, \quad \forall i = 1, \dots, N-1$$

is a necessary condition, but *not* sufficient.

lacktriangle Optimal c_i depends only on direct neighbors c_{i-1} and c_{i+1} .

<u>19</u>

A new algorithm for optimal knots

Algorithm:

- 1. Start with arbitrary knot distribution $\{c_i^0\}_{i=0}^N$.
- 2. Update alternatively

$$c_{2i}^{k+1} = (f')^{-1} \left(\frac{f(c_{2i+1}^k) - f(c_{2i-1}^k)}{c_{2i+1}^k - c_{2i-1}^k} \right) \quad \forall i$$

$$c_{2i+1}^{k+1} = (f')^{-1} \left(\frac{f(c_{2i+2}^k) - f(c_{2i}^k)}{c_{2i+2}^k - c_{2i}^k} \right) \quad \forall i$$

until a fixpoint is reached.

<u> 19</u>

Theoretical properties of the algorithm

One can show:

1. Order of knots is preserved during iteration.

$$c_{i-1}^k < c_i^k < c_{i+1}^k \Rightarrow c_{i-1}^{k+1} < c_i^{k+1} < c_{i+1}^{k+1} \quad \forall i$$

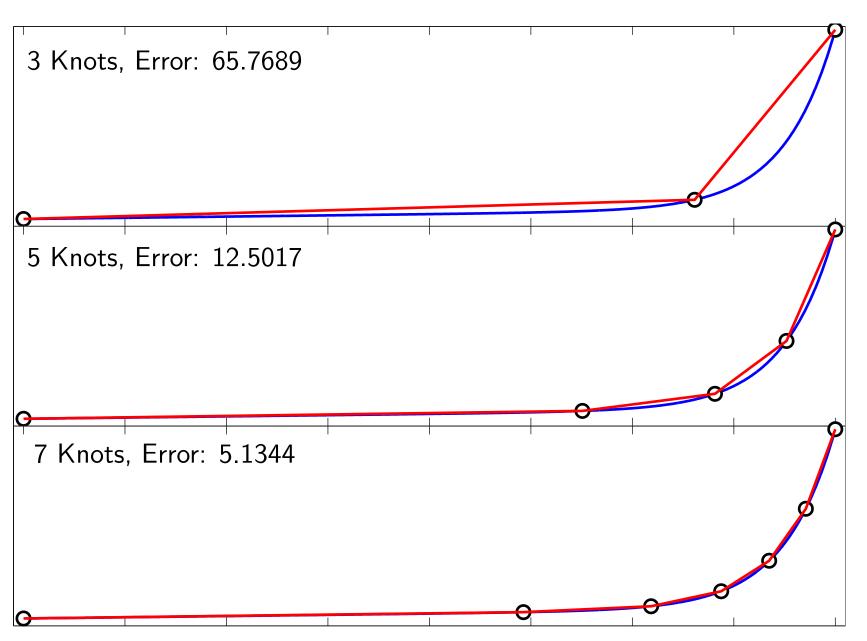
2. Sequence $\left(E\left(\left\{c_i^k\right\}_{i=0}^N, f\right)\right)_i$ ist monotonically decreasing.

$$E\left(\left\{c_{i}^{0}\right\}_{i=0}^{N}, f\right) \geqslant \ldots \geqslant E\left(\left\{c_{i}^{k}\right\}_{i=0}^{N}, f\right) \geqslant E\left(\left\{c_{i}^{k+1}\right\}_{i=0}^{N}, f\right) \geqslant \ldots$$

- 3. Sequence $\left(E\left(\left\{c_i^k\right\}_{i=0}^N, f\right)\right)_k$ is convergent.
- 4. Sequence $\left(\left\{c_i^k\right\}_{i=0}^N\right)_k$ contains a convergent subsequence.

Numerical example

Consider $f(x) = \exp(2x - 3) + x$ on the interval [-4, 4] with 3, 5 and 7 knots.



From interpolation to approximation

- So far only optimisation of the spatial location c_i .
- [Mainberger et al., 2011] optimised c_i and $f(c_i)$ separately.
 - \Rightarrow Resulted in large quality gains.

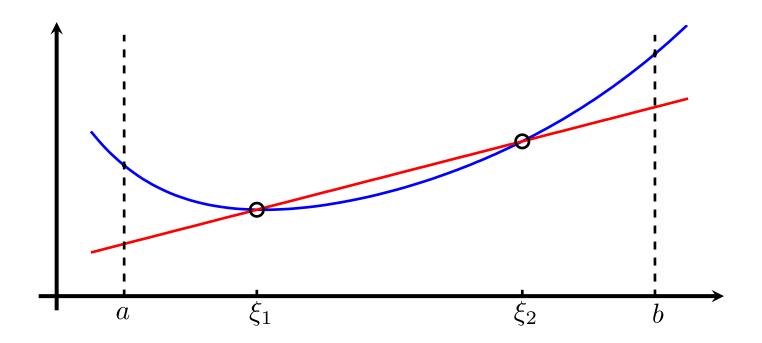
Can we optimise c_i and $f(c_i)$ simultaneously?

Requires abandoning interpolation and using approximation methods.

Optimal linear approximation of strictly convex functions

On [a,b], the optimal line approximating a strictly convex function f interpolates at

$$\xi_1 := \frac{3}{4}a + \frac{1}{4}b$$
 and $\xi_2 := \frac{1}{4}a + \frac{3}{4}b$



Proof: [Rice, 1964].

Optimal piecewise linear approximation of strictly convex functions

In [Hamideh, 2002], the author suggested the following algorithm.

Algorithm:

- 1. Start with arbitrary knot distribution $\{c_i^0\}_{i=0}^N$.
- 2. On each intervall $[c_i^k, c_{i+1}^k]$, compute optimal line $\ell_i(x)$ interpolating f at

$$\xi_{i,1} := \frac{3}{4}c_i^k + \frac{1}{4}c_{i+1}^k \quad \text{and} \quad \xi_{i,2} := \frac{1}{4}c_i^k + \frac{3}{4}c_{i+1}^k$$

$$\ell_i(x) := \frac{f(\xi_{i,2}) - f(\xi_{i,1})}{\xi_{i,2} - \xi_{i,1}} (x - \xi_{i,1}) + f(\xi_{i,1})$$

3. Set new c_i^{k+1} at the intersection point between $\ell_i(x)$ and $\ell_{i+1}(x)$. E.g. solve

$$\ell_i(c_i^{k+1}) = \ell_{i+1}(c_i^{k+1})$$

4. Repeat until convergence is reached.

Theoretical properties

One can show:

- 1. The sequence of approximation errors is convergent.
 - Proof: [Hamideh, 2002].
- 2. For all $i = 1, \ldots, N-1$ we have

$$\lim_{k\to\infty}\inf\left|c_{i+1}^k-c_i^k\right|>0\quad\text{and}\quad\lim_{k\to\infty}\left|c_i^{k+1}-c_i^k\right|=0$$

Proof: [Hamideh, 2002].

- 3. Convergence towards a optimal solution can be proven under some additional assumptions.
 - Proof: [Hamideh, 2002].

7

Theoretical properties

One can show:

4. The knots c_i are optimal if they solve the *continuity condition*:

$$f\left(\frac{3c_{i-1}+c_i}{4}\right) - 3f\left(\frac{c_{i-1}+3c_i}{4}\right) + 3f\left(\frac{3c_i+c_{i+1}}{4}\right) - f\left(\frac{c_i+3c_{i+1}}{4}\right) = 0$$

for all i.

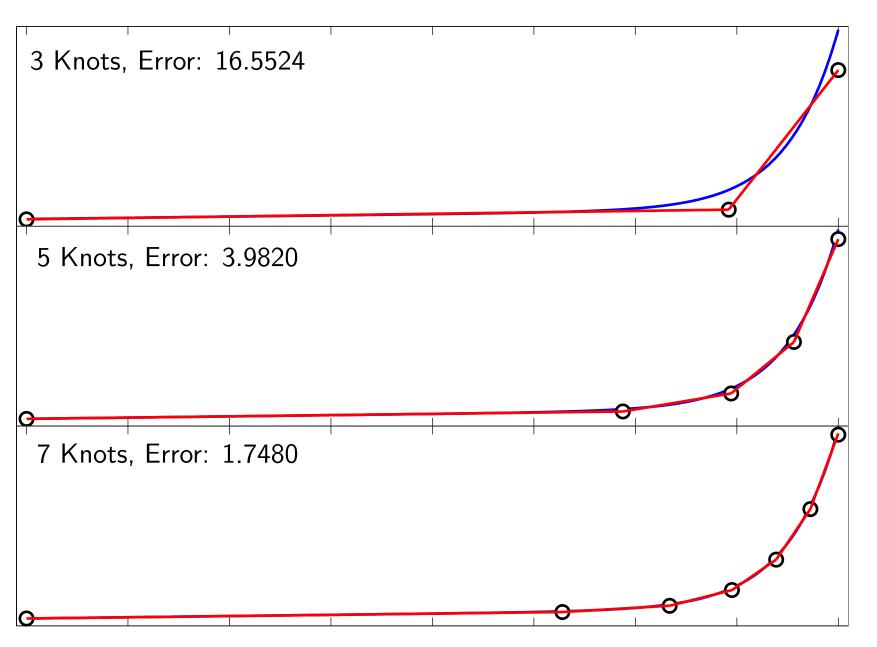
Proof: [Kioustelidis and Spyropoulos, 1978]

5. The algorithm of Hamideh corresponds to an inexact Newton method to solve the continuity conditions.

Proof: [Chieppa, 2009].

Numerical example

Consider $f(x) = \exp(2x - 3) + x$ on the interval [-4, 4] with 3, 5 and 7 knots.



Interpolation vs. approximation

The approximation framework reduces the error significantly.

Number of Knots	L_1 Error	
	Interpolation	Approximation
3	65.7689	16.5524
5	12.5017	3.9820
7	5.1344	1.7480

Note: Both approaches have similar complexity and runtimes.

Combined spatial and tonal optimisation is possible and pays off!

Summary and conclusions

We have seen:

- ◆ Two strategies to optimise interpolation data in 1D.
- Approximation frameworks can outperform pure interpolation approaches.

Potential Issues:

- Applications to 2D images cumbersome.
 - \Rightarrow Apply alternatively along every dimension.
- Convexity requirement is essential and a severe restriction.
 - \Rightarrow Segmentation into convex/concave regions becomes necessary.

Ongoing Work:

- Improved handling of 2D image data.
- Extensions to other interpolation methods.

4

5 6

7

8

9

10

11

12

13

14

15

16

17

18

<u>19</u>

References

References

- [1] L. Chieppa, Numerical algorithms for curve approximation and novel user oriented interactive tools, Phd Thesis, Universita Degli Studi Di Bari, 2009
- [2] H. Hamideh, On the Optimal Knots of First Degree Splines, Kuwait J. Sci. Eng. 29(1), 1–13, 2002
- [3] J. B. Kioustelidis, K. J. Spyropoulos, L_1 Approximations of Strictly Convex Functions by Means of First Degree Splines, Computing. 20, 35–45, 1978
- [4] M. Mainberger et al., *Optimising spatial and tonal data for homogeneous diffusion inpainting*, In Scale Space and Variational Methods in Computer Vision, Proc. Third International Conference, SSVM 2011, Lecture Notes in Computer Science, 6667, 26-37, Springer, Berlin, 2012.
- [5] J.R. Rice, *The Approximation of Functions*, Addison-Wesley, Reading, MA, USA, 1964

<u> 19</u>

Thank you

Thank you very much for your attention.

6