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Introduction e Interpolation ¢ Approximation ¢ Conclusions

Inpainting with homogeneous diffusion

Consider the Laplace equation with mixed boundary conditions.

(Au:(), on {2
. wu=g, on Qg
Opu =0, on 6f)

\

® Qg represents known data.

® O\ Qg region to be inpaintend.

® |mage reconstructions given by solution u of boundary value problem.
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Influence of the inpainting data

Choice of {2x has tremendous impact on the reconstruction.

Bad reconstruction. Good reconstruction.

How to optimise the interpolation data Qg ?
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Outlook

¢ Optimisation in an interpolation framework
e Problem formulation
e A new algorithm for optimal interpolation data
e Theoretical analysis

e Example

¢ Optimisation in an approximation framework
e Problem formulation
e An algorithm for optimal approximation data
e Theoretical results
e Example

€ Conclusions



http://www.mia.uni-saarland.de

Introduction e Interpolation ¢ Approximation ¢ Conclusions

Analysis in the 1D setting
Simplification: Only consider 1D strictly convex functions f : [a,b] — R.
Advantages:

® |npainting simplifies to piecewise linear spline interpolation.

® Analytic expression for reconstruction is available.
We write (assuming ¢o := a and ¢y := b):

<~ [ flei) = fle)
) .
O (w5co,. (V=T o et 1)) Xy @
1=0 Cit1 — Ci -
for the linear spline interpolating f at positions cg, ¢1, ..., cN.

X () being the indicator function of the set M.

® Interpolation error (L1 sense) on the interval |a, b] given by

({cz o f / ‘ff (z;¢0,...,cn) — f(z)|da
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Problem formulation
Task:

Find ¢, ..., cy that minimise interpolation error £ ({Ci}fl\;O’ f).

Observe:

® Error simplifies to

B (1) -

® Necessary conditions for a minimum:

N—-1

Z Ci+1 — (f (cix1) + f (c3)) /f

1=0

[\DI}—\

F(c;) = flew) = Flem) oy Ny

Ci+1 — Ci—1
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Necessary optimality conditions
\ D ({Ci}fio, f) is convex for N = 2 and generally non-convex for N > 2.

® The requirement

F(c;) = flew) = Flem) vy Ny

Ci+1 — Ci—1

IS a necessary condition, but not sufficient.

® Optimal ¢; depends only on direct neighbors ¢;_1 and ¢;4 1.
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A new algorithm for optimal knots

Algorithm:

1. Start with arbitrary knot distribution {c?}ivzo.

2. Update alternatively

Coiv1 —

St = ()7 (f i) -

k+1

k
Coi—1

f (e%)) v

until a fixpoint is reached.

k .
Coitr1 = (f/)_l (f (CQZ/.;LQ)

Coivo —

k
Cosi

/ (cé%)) y
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Theoretical properties of the algorithm
One can show:

1. Order of knots is preserved during iteration.

k k_ ok k+1 _ k1 _ ktl
i1 <¢ <ciyg=>c ] <c U <cgly Vi

2. Sequence (E ({cf}flo, f))k ist monotonically decreasing.

E({ 0 f) = 2 BE({d)ie ) 2 E({ 0 1) = -

3. Sequence (E ({c,’f}flo, f))k is convergent.

ey N .
4. Sequence ({cZ }Z.:O)k contains a convergent subsequence.
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Numerical example

Consider f(x) = exp(2x — 3) 4+ x on the interval [—4,4] with 3, 5 and 7 knots.

3 Knots, Error: 65.7689

IG T—"?‘i ! | | | |
5 Knots, Error: 12.5017

(I\ﬁ | I ] | | ~ | |
7 Knots, Error: 5.1344



http://www.mia.uni-saarland.de

Introduction e Interpolation ¢ Approximation ¢ Conclusions

From interpolation to approximation
® So far only optimisation of the spatial location ¢;.

® [Mainberger et al., 2011] optimised ¢; and f (¢;) separately.
= Resulted in large quality gains.

Can we optimise ¢; and f (¢;) simultaneously?

® Requires abandoning interpolation and using approximation methods.
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Optimal linear approximation of strictly convex functions

On [a, b], the optimal line approximating a strictly convex function f interpolates at

3 1 3

1
51 = ZCL + Zb and 52 = ZCL -+ Zb

Proof: [Rice, 1964].
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Optimal piecewise linear approximation of strictly convex functions
In [Hamideh, 2002], the author suggested the following algorithm.
Algorithm:

1. Start with arbitrary knot distribution {cg}i\fzo.

2. On each intervall [cf,cF ], compute optimal line ¢;(x) interpolating f at

§i1 = Zcf + icﬁrl and &0 = %cf + Zcﬁ_l
/, (:C) — f (€Z,2) : f(gz,l) (x . fz’,l) + f (€i71)
52,2 fz,l

k+1

3. Set new c;

E.g. solve

at the intersection point between ¢;(x) and ¢;1(x).

Gi(ETY) = lia (T

1

4. Repeat until convergence is reached.
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Theoretical properties
One can show:

1. The sequence of approximation errors is convergent.
Proof: [Hamideh, 2002].

2. Foralli=1,...,N —1 we have

lim inf ‘cﬁ_l — cﬂ >0 and lim |c; p

k— oo k— oo

Proof: [Hamideh, 2002].

3. Convergence towards a optimal solution can be proven under some additional

assumptions.
Proof: [Hamideh, 2002].
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Theoretical properties

One can show:

4. The knots c; are optimal if they solve the continuity condition:

3¢i—1+ ¢ ci—1 + 3¢; 3¢; + Cit1 Ci+3Cit1\
() e (P e (B ) - () =

for all <.
Proof: [Kioustelidis and Spyropoulos, 1978]

5. The algorithm of Hamideh corresponds to an inexact Newton method to solve
the continuity conditions.

Proof: [Chieppa, 2009].
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Numerical example

Consider f(x) = exp(2x — 3) 4+ x on the interval [—4,4] with 3, 5 and 7 knots.

3 Knots, Error: 16.5524

G [ | | | | | |
5 Knots, Error: 3.9820

C [ | | | | | |
7 Knots, Error: 1.7480
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Interpolation vs. approximation

The approximation framework reduces the error significantly.

Number of Ly Error
Knots Interpolation  Approximation
3 65.7689 16.5524
5 12.5017 3.9820
7 5.1344 1.7480

Note: Both approaches have similar complexity and runtimes.

Combined spatial and tonal optimisation is possible and pays off!
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Summary and conclusions
We have seen:
® Two strategies to optimise interpolation data in 1D.

® Approximation frameworks can outperform pure interpolation approaches.

Potential Issues:

® Applications to 2D images cumbersome.

= Apply alternatively along every dimension.

® Convexity requirement is essential and a severe restriction.

= Segmentation into convex/concave regions becomes necessary.
Ongoing Work:
® Improved handling of 2D image data.

® Extensions to other interpolation methods.
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Thank you

Thank you very much for your attention.
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