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Constrained optimisation problems

I Let J and H be two convex functions from Rn to R

I Assume min
u

H (u) = 0

I Consider the constrained problem

arg min
u

J (u) such that H (u) = 0

I Can be very difficult to solve.

H (u) = 0 can have infinitely many solutions.

J and H not necessarily differentiable.

3 / 29



The Bregman iteration Bregman iteration for optical flow Bibliography

Usual approach

I Constrained optimization problem

arg min
u

J (u) such that H (u) = 0

I Approximate solution by solving series of problems

arg min
u

J (u) + 𝜆nH (u)

for 0 < 𝜆1 < 𝜆2 < 𝜆3 < . . . < 𝜆N .

I Approach is called penalty function/continuation method.
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Disadvantages

I Requires very large 𝜆N for good approximation.

Numerically unstable/ill-conditioned for large 𝜆N .

I Sometimes the 𝜆i can only be increased in small steps.

Algorithm becomes slow due to lots of computations.

I Can be as difficult to solve as initial problem.

Are there alternative approaches without these problems?

I Bregman iteration presents interesting alternative.
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Subdifferential and subgradient

Assume f : Rn → R is a convex function.

Definition
We call subdifferential of f at y the set

𝜕f (y) := {q ∈ Rn : f (x) > f (y) + ⟨q, x − y⟩, ∀x ∈ Rn}

Its elements are called subgradients.
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Example
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Bregman divergence

Again assume f is a convex function.

Definition
We call Bregman divergence of f the function:

Dq
f (x , y) := f (x) − f (y) − ⟨q, x − y⟩

I y is an arbitrary but fixed point.

I q is a subgradient of f at y .
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Interpretation

I Consider convex and differentiable function f : Rn → R

I Linearising f with Taylor expansion around y gives

Lf ,y (x) := f (y) + ⟨∇f (y) , x − y⟩

I Difference between f (x) and Lf ,y (x) is

f (x) − Lf ,y (x) = f (x) − f (y) − ⟨∇f (y) , x − y⟩

I This is the definition of the Bregman divergence!
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Definition of the Bregman iteration
I Bregman iteration is an algorithm for solving

arg min
u

J (u) such that H (u) = 0

for convex J and H from Rn to R and min
u

H (u) = 0
I It computes iteratively

uk+1 = arg min
u

Dpk

J

(︁
u, uk

)︁
+ 𝜆H (u)

= arg min
u

J (u) − J
(︁
uk

)︁
− ⟨pk , u − uk⟩ + 𝜆H (u)

= arg min
u

J (u) − ⟨pk , u − uk⟩ + 𝜆H (u)

with pk ∈ 𝜕J
(︁
uk

)︁
and arbitrary 𝜆 > 0.
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Advantages of Bregman iteration

At first glance similar to penalty function methods.

However

I 𝜆 > 0 is arbitrary and does not need to be large.

Numerically much more stable.

I Only 1 problem to solve instead of series of problems.

Faster than penalty function/continuation methods.

I Convergence towards solution of constrained problem.
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Convergence results

If H (u) := ‖Au − b‖2
2 with matrix A and vector b.

Then one can show

I 0 6 H
(︁
uk+1

)︁
6 H

(︁
uk

)︁
I If H

(︁
uk

)︁
= 0, then uk also solves

arg min
u

J (u) such that H (u) = 0
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Preliminary conclusions

I Constrained optimisation problems are difficult to solve.

I Conventional approaches may have disadvantages.

I Bregman iteration is an interesting alternative.
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Applying Bregman iteration in optical flow

Simple model:

I Grey value constancy

f (x + u, y + v , t) = f (x , y , t + 1)

I Linearised constancy assumption.

fx · u + fy · v + ft = 0

I Flow field should also be smooth (smoothness constraint)

‖∇u‖1 + ‖∇v‖1 should be small
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Problem formulation

I Find minimizer (u, v) of

arg min
u,v

‖∇u‖1 + ‖∇v‖1 + 𝜇

2 ‖fx · u + fy · v + ft‖2
2

I Difficult to solve: ‖·‖1 is not differentiable.
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Problem formulation

I Find minimizer (u, v) of

arg min
u,v

‖∇u‖1 + ‖∇v‖1 + 𝜇

2 ‖fx · u + fy · v + ft‖2
2

I Define

w := (u, v)T

F w := fx · u + fy · v

I Problem rewrites as

arg min
w

‖∇w‖1 + 𝜇

2 ‖Fw + ft‖2
2
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Problem formulation

Unconstrained problem

arg min
w

‖∇w‖1 + 𝜇

2 ‖Fw + ft‖2
2

can be rewritten as constrained problem

arg min
w ,d

‖d‖1 + 𝜇

2 ‖Fw + ft‖2
2 such that d = ∇w
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Problem formulation
I Find minimizer (w , d) of

arg min
w ,d

‖d‖1 + 𝜇

2 ‖Fw + ft‖2
2 such that d = ∇w

I Define

𝜂 := (w , d)

J (𝜂) := ‖d‖1 + 𝜇

2 ‖Fw + ft‖2
2

A (𝜂) := d − ∇w

I Problem rewrites as

arg min
𝜂

J (𝜂) such that ‖A 𝜂‖2
2 = 0
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Solving through Bregman iteration
I Find minimizer 𝜂 of

arg min
𝜂

J (𝜂) such that ‖A 𝜂‖2
2 = 0

I Apply Bregman iteration:

𝜂k+1 = arg min
𝜂

Dpk

J

(︁
𝜂, 𝜂k

)︁
+ 𝜆

2 ‖A 𝜂‖2
2

pk ∈ 𝜕J
(︁
𝜂k

)︁
I One can show following simplification is possible:

𝜂k+1 = arg min
𝜂

J (𝜂) + 𝜆

2 ‖A 𝜂 − bk‖2
2

bk+1 = bk − A𝜂k+1
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Solving through Bregman iteration
I Leads to this algorithm(︁
wk+1, dk+1

)︁
⏟  ⏞  

= 𝜂k+1

= arg min
w ,d

‖d‖1 + 𝜇

2 ‖Fw + ft‖2
2⏟  ⏞  

= J(𝜂)

+𝜆

2 ‖d − ∇w⏟  ⏞  
= A 𝜂

−bk‖2
2

bk+1 = bk −
(︁
dk+1 − ∇wk+1

)︁
I Easily solvable through simple 3 step algorithm:

Step 1: wk+1 = arg min
w

𝜇

2 ‖Fw + ft‖2
2 + 𝜆

2 ‖dk − ∇w − bk‖2
2

Step 2: dk+1 = arg min
d

‖d‖1 + 𝜆

2 ‖d − ∇wk+1 − bk‖2
2

Step 3: bk+1 = bk −
(︁
dk+1 − ∇wk+1

)︁
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Solving step 1

wk+1 = arg min
w

𝜇

2 ‖Fw + ft‖2
2 + 𝜆

2 ‖dk − ∇w − bk‖2
2

I Cost function is differentiable. Requires solving linear system.

Matrix is positive definite, sparse and very large.

Use Gauss-Seidel or similar algorithms.
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Solving step 2

dk+1 = arg min
d

‖d‖1 + 𝜆

2 ‖d − ∇wk+1 − bk‖2
2

I Step 2 has analytical solution:

dk+1
j = shrink

(︂(︁
∇wk+1 + bk

)︁
j
,

1
𝜆

)︂
j = 1, . . . , n

where shrink (x , 𝛾) := x
|x | max (|x | − 𝛾, 0).

Operates componentwise.

Only simple operations. Very fast.
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Solving step 3

bk+1 = bk −
(︁
dk+1 − ∇wk+1

)︁

I Step 3 is just a simple computation.
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Example

Figure: Yosemite sequence frame 10
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Figure: Yosemite sequence frame 11
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Example

(a) Result (b) Exact solution

Figure: Qualitative comparison: Bregman result and exact ground truth
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Conclusion

+ Results look as expected.

Average angular error of 5.65.

+ Only 65 Iterations, 5 Iterations for Gauss-Seidel each time.

Algorithm is very fast.

+ Very simple implementation.

– 4 different parameters. Not clear how to chose them.

In this case: 𝜆 = 36.52, 𝜇 = 0.49, 65 and 5 iterations

+ Useful for functionals that are difficult to minimize.

25 / 29



The Bregman iteration Bregman iteration for optical flow Bibliography

Aims of the thesis

I Find good models for the Bregman Iteration.

I Theoretical and numerical evaluation

Convergence behaviour

Comparison to other modern approaches
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Thank you for your attention.
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