### Bregman iteration for optical flow

Laurent Hoeltgen

18th December 2009

This work is licensed under a Creative Commons "Attribution-ShareAlike 4.0 International" license.



#### Outline

#### The Bregman iteration

Motivation
Mathematical prerequisites
Definition

### Bregman iteration for optical flow

Problem formulation
Solving the optic flow problem
Conclusion

### Constrained optimisation problems

- ▶ Let J and H be two convex functions from  $\mathbb{R}^n$  to  $\mathbb{R}$
- Assume  $\min_{u} H(u) = 0$
- Consider the constrained problem

$$\underset{u}{\operatorname{arg\,min}} J(u)$$
 such that  $H(u) = 0$ 

- Can be very difficult to solve.
  - H(u) = 0 can have infinitely many solutions.
  - *J* and *H* not necessarily differentiable.

### Usual approach

Constrained optimization problem

$$\underset{u}{\operatorname{arg\,min}} J(u)$$
 such that  $H(u) = 0$ 

Approximate solution by solving series of problems

$$\underset{u}{\operatorname{arg \, min}} \ J\left(u\right) + \lambda_{n}H\left(u\right)$$

for 
$$0 < \lambda_1 < \lambda_2 < \lambda_3 < \ldots < \lambda_N$$
.

Approach is called penalty function/continuation method.

### Disadvantages

- $\triangleright$  Requires very large  $\lambda_N$  for good approximation.
  - Numerically unstable/ill-conditioned for large  $\lambda_N$ .
- ▶ Sometimes the  $\lambda_i$  can only be increased in small steps.
  - Algorithm becomes slow due to lots of computations.
- Can be as difficult to solve as initial problem.

### Are there alternative approaches without these problems?

▶ Bregman iteration presents interesting alternative.

### Subdifferential and subgradient

Assume  $f: \mathbb{R}^n \to \mathbb{R}$  is a convex function.

#### Definition

We call subdifferential of f at y the set

$$\partial f(y) := \{ q \in \mathbb{R}^n : f(x) \geqslant f(y) + \langle q, x - y \rangle, \ \forall x \in \mathbb{R}^n \}$$

Its elements are called subgradients.





Figure: A convex function f



Figure:  $q=-\frac{1}{2}$  is a subgradient of f at y



Figure: q=1 another subgradient of f at y

### Bregman divergence

Again assume f is a convex function.

#### Definition

We call Bregman divergence of *f* the function:

$$D_{f}^{q}(x,y) := f(x) - f(y) - \langle q, x - y \rangle$$

- y is an arbitrary but fixed point.
- q is a subgradient of f at y.

### Interpretation

- ▶ Consider convex and differentiable function  $f: \mathbb{R}^n \to \mathbb{R}$
- $\triangleright$  Linearising f with Taylor expansion around y gives

$$L_{f,y}(x) := f(y) + \langle \nabla f(y), x - y \rangle$$

▶ Difference between f(x) and  $L_{f,y}(x)$  is

$$f(x) - L_{f,y}(x) = f(x) - f(y) - \langle \nabla f(y), x - y \rangle$$

This is the definition of the Bregman divergence!

### Definition of the Bregman iteration

Bregman iteration is an algorithm for solving

$$\underset{u}{\operatorname{arg \, min}} \ J\left(u\right) \quad \text{such that} \quad H\left(u\right) = 0$$

for convex J and H from  $\mathbb{R}^n$  to  $\mathbb{R}$  and  $\min_{u} H(u) = 0$ 

It computes iteratively

$$\begin{split} u^{k+1} &= \arg\min_{u} \ D_{J}^{p^{k}} \left( u, u^{k} \right) + \lambda H \left( u \right) \\ &= \arg\min_{u} \ J \left( u \right) - J \left( u^{k} \right) - \langle p^{k}, u - u^{k} \rangle + \lambda H \left( u \right) \\ &= \arg\min_{u} \ J \left( u \right) - \langle p^{k}, u - u^{k} \rangle + \lambda H \left( u \right) \end{split}$$

with 
$$p^k \in \partial J\left(u^k\right)$$
 and arbitrary  $\lambda > 0$ .

### Advantages of Bregman iteration

At first glance similar to penalty function methods.

#### However

- $ightharpoonup \lambda > 0$  is arbitrary and does not need to be large.
  - Numerically much more stable.
- Only 1 problem to solve instead of series of problems.
  - Faster than penalty function/continuation methods.
- ▶ Convergence towards solution of constrained problem.

### Convergence results

If  $H(u) := ||Au - b||_2^2$  with matrix A and vector b.

Then one can show

▶ If  $H(u^k) = 0$ , then  $u^k$  also solves

$$\underset{u}{\operatorname{arg\,min}} J(u)$$
 such that  $H(u) = 0$ 

### Preliminary conclusions

- ► Constrained optimisation problems are difficult to solve.
- Conventional approaches may have disadvantages.
- Bregman iteration is an interesting alternative.

### Applying Bregman iteration in optical flow

#### Simple model:

► Grey value constancy

$$f(x + u, y + v, t) = f(x, y, t + 1)$$

Linearised constancy assumption.

$$f_{x} \cdot u + f_{y} \cdot v + f_{t} = 0$$

► Flow field should also be smooth (smoothness constraint)

$$\|\nabla u\|_1 + \|\nabla v\|_1$$
 should be small

 $\triangleright$  Find minimizer (u, v) of

$$\arg\min_{u,v} \|\nabla u\|_1 + \|\nabla v\|_1 + \frac{\mu}{2} \|f_{\mathsf{X}} \cdot u + f_{\mathsf{y}} \cdot v + f_{\mathsf{t}}\|_2^2$$

▶ Difficult to solve:  $\|\cdot\|_1$  is not differentiable.

 $\triangleright$  Find minimizer (u, v) of

$$\arg\min_{u,v} \ \|\nabla u\|_1 + \|\nabla v\|_1 + \frac{\mu}{2} \|f_{\mathsf{x}} \cdot u + f_{\mathsf{y}} \cdot v + f_t\|_2^2$$

Define

$$w := (u, v)^{T}$$
$$F w := f_{x} \cdot u + f_{y} \cdot v$$

Problem rewrites as

$$\underset{w}{\operatorname{arg \, min}} \|\nabla w\|_1 + \frac{\mu}{2} \|Fw + f_t\|_2^2$$

Unconstrained problem

$$\arg\min_{w} \|\nabla w\|_{1} + \frac{\mu}{2} \|Fw + f_{t}\|_{2}^{2}$$

can be rewritten as constrained problem

$$\mathop{\arg\min}_{w,d} \ \|d\|_1 + \frac{\mu}{2} \| \textit{Fw} + \textit{f}_t \|_2^2 \quad \text{such that} \quad d = \nabla w$$

Find minimizer (w, d) of

$$\displaystyle \mathop{\mathsf{arg\,min}}_{w,d} \|d\|_1 + \frac{\mu}{2} \| \mathsf{F} w + \mathsf{f}_t \|_2^2 \quad \mathsf{such that} \quad d = \nabla w$$

Define

$$\eta := (w, d)$$

$$J(\eta) := \|d\|_1 + \frac{\mu}{2} \|Fw + f_t\|_2^2$$

$$A(\eta) := d - \nabla w$$

Problem rewrites as

$$\underset{n}{\operatorname{arg \, min}} \ J(\eta) \quad \text{such that} \quad \|A\eta\|_2^2 = 0$$

### Solving through Bregman iteration

ightharpoonup Find minimizer  $\eta$  of

$$\underset{\eta}{\operatorname{arg\,min}}\ J\left(\eta\right)\quad \text{such that}\quad \|A\,\eta\|_2^2=0$$

► Apply Bregman iteration:

$$\eta^{k+1} = \underset{\eta}{\arg\min} \ D_J^{p^k} \left( \eta, \eta^k \right) + \frac{\lambda}{2} ||A \eta||_2^2$$
$$p^k \in \partial J \left( \eta^k \right)$$

One can show following simplification is possible:

$$\begin{split} & \eta^{k+1} = \arg\min_{\eta} \ J\left(\eta\right) + \frac{\lambda}{2} \|A\eta - b^k\|_2^2 \\ & b^{k+1} = b^k - A\eta^{k+1} \end{split}$$

### Solving through Bregman iteration

► Leads to this algorithm

$$\underbrace{\begin{pmatrix} w^{k+1}, d^{k+1} \end{pmatrix}}_{= \eta^{k+1}} = \underset{w, d}{\operatorname{arg \, min}} \underbrace{ \|d\|_1 + \frac{\mu}{2} \|Fw + f_t\|_2^2}_{= J(\eta)} + \frac{\lambda}{2} \|\underline{d - \nabla w} - b^k\|_2^2$$

$$b^{k+1} = b^k - \left(d^{k+1} - \nabla w^{k+1}\right)$$

Easily solvable through simple 3 step algorithm:

Step 1: 
$$w^{k+1} = \arg\min_{w} \frac{\mu}{2} \|Fw + f_t\|_2^2 + \frac{\lambda}{2} \|d^k - \nabla w - b^k\|_2^2$$
  
Step 2:  $d^{k+1} = \arg\min_{d} \|d\|_1 + \frac{\lambda}{2} \|d - \nabla w^{k+1} - b^k\|_2^2$   
Step 3:  $b^{k+1} = b^k - \left(d^{k+1} - \nabla w^{k+1}\right)$ 

### Solving step 1

$$w^{k+1} = \arg\min_{w} \frac{\mu}{2} ||Fw + f_t||_2^2 + \frac{\lambda}{2} ||d^k - \nabla w - b^k||_2^2$$

- ► Cost function is differentiable. Requires solving linear system.
  - Matrix is positive definite, sparse and very large.
  - Use Gauss-Seidel or similar algorithms.

### Solving step 2

$$d^{k+1} = \underset{d}{\arg\min} \ \|d\|_1 + \frac{\lambda}{2} \|d - \nabla w^{k+1} - b^k\|_2^2$$

► Step 2 has analytical solution:

$$d_j^{k+1} = \operatorname{shrink}\left(\left(\nabla w^{k+1} + b^k\right)_j, \frac{1}{\lambda}\right) \quad j = 1, \dots, n$$

where shrink  $(x, \gamma) := \frac{x}{|x|} \max (|x| - \gamma, 0)$ .

- Operates componentwise.
- Only simple operations. Very fast.

### Solving step 3

$$b^{k+1} = b^k - \left(d^{k+1} - \nabla w^{k+1}\right)$$

Step 3 is just a simple computation.



Figure: Yosemite sequence frame 10



Figure: Yosemite sequence frame 11



Figure: Qualitative comparison: Bregman result and exact ground truth

#### Conclusion

- + Results look as expected.
  - Average angular error of 5.65.
- + Only 65 Iterations, 5 Iterations for Gauss-Seidel each time.
  - Algorithm is very fast.
- + Very simple implementation.
- 4 different parameters. Not clear how to chose them.
  - In this case:  $\lambda=36.52,~\mu=0.49,~65$  and 5 iterations
- + Useful for functionals that are difficult to minimize.

### Aims of the thesis

- Find good models for the Bregman Iteration.
- Theoretical and numerical evaluation
  - Convergence behaviour
  - Comparison to other modern approaches

### Bibliography



UCLA CAM Report 04-13.

S. Osher, M. Burger, D. Goldfarb and J. Darbon Bregman iterative algorithm for  $\ell_1$  minimization with applications to compressed sensing. UCLA CAM Report 07-37.

S. Osher and T. Goldstein The split Bregman Method for  $\ell_1$  regularized problems. UCLA CAM Report 08-29.

### **Bibliography**



#### L.M. Bregman

The relaxation method for finding the common point of convex sets and its application to the solution of problems in convex programming.

USSR Computational Mathematics and Mathematical Physics, 7:200-217,1967



#### M. Burger, E. Resmerita and L. He

Error estimation for Bregman iterations and inverse scale space methods.

Computing, 81:109-135, 2007

Thank you for your attention.